Advertisements
Advertisements
प्रश्न
If sec θ = `25/7`, then find the value of tan θ.
उत्तर
∵ sec2θ – tan2θ = 1 ......[Identities]
`(25/7)^2 - ("tan" theta)^2 = 1`
`625/49 -1 = ("tan" theta)^2`
`(625 - 49)/49 = ("tan" theta)^2`
`576/49 = ("tan" theta)^2`
`"tan" theta = 24/7`
APPEARS IN
संबंधित प्रश्न
Prove that `cosA/(1+sinA) + tan A = secA`
Prove the following trigonometric identities.
(1 + cot A − cosec A) (1 + tan A + sec A) = 2
Prove the following identities:
`cosecA + cotA = 1/(cosecA - cotA)`
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`
`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `
Show that none of the following is an identity:
`tan^2 theta + sin theta = cos^2 theta`
If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
(sec A + tan A) (1 − sin A) = ______.
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Prove the following identity :
`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
If x sin3θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ , then show that x2 + y2 = 1.
Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.
Prove the following identities.
`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ
Eliminate θ if x = r cosθ and y = r sinθ.