Advertisements
Advertisements
प्रश्न
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
उत्तर
L.H.S. = x2 + y2 + z2
= (r sin A cos B)2 + (r sin A sin B)2 + (r cos A)2
= r2 sin2 A cos2 B + r2 sin2 A sin2 B + r2 cos2 A
= r2 sin2 A (cos2 B + sin2 B) + r2 cos2 A
= r2 (sin2 A + cos2 A)
= r2 = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Prove the following trigonometric identities.
(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`
`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.