Advertisements
Advertisements
प्रश्न
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
उत्तर
Given : sin θ + cos θ = m and secθ + cosecθ = n
Consider L.H.S. = n(m2 - 1) = (secθ + cosecθ)[(sinθ + cosθ)2 - 1]
= `(1/cosθ + 1/sinθ) [sin^2θ + cos^2θ + 2sinθcosθ - 1`]
= `((cosθ + sinθ)/(sinθcosθ)) (1 + 2sinθcosθ - 1)`
= `((cosθ + sinθ))/(sinθcosθ) (2 sinθ cosθ)`
= 2(sinθ + cosθ)
= 2m = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
If `sec theta + tan theta = x," find the value of " sec theta`
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.
Choose the correct alternative:
cos θ. sec θ = ?
Choose the correct alternative:
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.