Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
उत्तर
L.H.S. = `(sec A - 1)/(sec A + 1)`
= `(1/(cosA) - 1/1)/(1/(cosA) + 1/1`
= `((1 - cos A)/cos A)/((1 + cos A)/cos A)`
= `(1 - cos A)/cos A xx cos A/(1 + cos A)`
= `(1 - cosA)/(1 + cosA)`
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
` tan^2 theta - 1/( cos^2 theta )=-1`
Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
If sec θ = `25/7`, find the value of tan θ.
Solution:
1 + tan2 θ = sec2 θ
∴ 1 + tan2 θ = `(25/7)^square`
∴ tan2 θ = `625/49 - square`
= `(625 - 49)/49`
= `square/49`
∴ tan θ = `square/7` ........(by taking square roots)
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A