Advertisements
Advertisements
प्रश्न
If sec θ = `25/7`, find the value of tan θ.
Solution:
1 + tan2 θ = sec2 θ
∴ 1 + tan2 θ = `(25/7)^square`
∴ tan2 θ = `625/49 - square`
= `(625 - 49)/49`
= `square/49`
∴ tan θ = `square/7` ........(by taking square roots)
उत्तर
1 + tan2 θ = sec2 θ
∴ 1 + tan2 θ = `(25/7)^2`
∴ tan2 θ = `625/49 - 1`
= `(625 - 49)/49`
= `576/49`
∴ tan θ = `24/7` ........(by taking square roots)
APPEARS IN
संबंधित प्रश्न
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
Prove the following identities:
sec2 A . cosec2 A = tan2 A + cot2 A + 2
`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `
`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`
Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that `x^2 + y^2 + z^2 = r^2`
Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.
Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1
If tan α + cot α = 2, then tan20α + cot20α = ______.