Advertisements
Advertisements
प्रश्न
Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.
उत्तर
LHS = sin (90° - θ) cos (90° - θ)
LHS = cos θ. sin θ
RHS = tan θ. cos2θ
RHS = `sin θ/cos θ` x cos2θ
RHS = cos θ. sin θ
∴ LHS = RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Show that `sqrt((1-cos A)/(1 + cos A)) = sinA/(1 + cosA)`
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9.
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Find the value of ( sin2 33° + sin2 57°).
Choose the correct alternative:
tan (90 – θ) = ?
Prove that `"cosec" θ xx sqrt(1 - cos^2theta)` = 1