Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
उत्तर
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA))`
= `((sec^2A - tan^2A) + (secA - tanA)^2)/(cosecA(secA - tanA))`
= `((secA - tanA)(secA + tanA) + (secA + tanA)^2)/(cosecA(secA - tanA))`
= `((secA + tanA) + (secA - tanA))/(cosecA)`
= `(2secA)/(cosecA)`
= `2(1/cosA)/(1/sinA)`
= 2 tanA
APPEARS IN
संबंधित प्रश्न
Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
`(1-cos^2theta) sec^2 theta = tan^2 theta`
`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`
`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
Prove the following identity :
`tan^2A - sin^2A = tan^2A.sin^2A`
If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3
The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.
Show that tan4θ + tan2θ = sec4θ – sec2θ.