मराठी

The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.

पर्याय

  • – 1

  • 0

  • 1

  • `3/2`

MCQ
रिकाम्या जागा भरा

उत्तर

The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is 0.

Explanation:

According to the question,

We have to find the value of the equation,

cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)

= cosec[90° – (15° – θ)] – sec(15° – θ) – tan(55° + θ) + cot[90° – (55° + θ)]

Since, cosec(90° – θ) = sec θ

And cot(90° – θ) = tan θ

We get,

= sec(15° – θ) – sec(15° – θ) – tan(55° + θ) + tan(55° + θ)

= 0

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Introduction To Trigonometry and Its Applications - Exercise 8.1 [पृष्ठ ९०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
पाठ 8 Introduction To Trigonometry and Its Applications
Exercise 8.1 | Q 3 | पृष्ठ ९०

संबंधित प्रश्‍न

Prove the following trigonometric identity.

`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`


Prove the following identities:

(cos A + sin A)2 + (cos A – sin A)2 = 2


`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`


`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`


`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`


Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`


Write the value of tan10° tan 20° tan 70° tan 80° .


If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9. 


If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2


Prove the following identity : 

`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`


Prove the following identity : 

`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`


Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.


Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.


Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.


Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`


Prove that `"cosec"  θ xx sqrt(1 - cos^2theta)` = 1


tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

= `square (1 - (sin^2theta)/(tan^2theta))`

= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`

= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`

= `tan^2theta (1 - square)`

= `tan^2theta xx square`    .....[1 – cos2θ = sin2θ]

= R.H.S


To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.

Activity:

L.H.S = `square`

= `square/sintheta + sintheta/costheta`

= `(cos^2theta + sin^2theta)/square`

= `1/(sintheta*costheta)`     ......`[cos^2theta + sin^2theta = square]`

= `1/sintheta xx 1/square`

= `square`

= R.H.S


sin(45° + θ) – cos(45° – θ) is equal to ______.


Statement 1: sin2θ + cos2θ = 1

Statement 2: cosec2θ + cot2θ = 1

Which of the following is valid?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×