मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below. Activity: L.H.S = □ = □sinθ+sinθcosθ = cos2θ+sin2θ□ = 1sinθ⋅cosθ ......[cos2θ+sin2θ=□] = 1sinθ×1□ = □ = R.H.S - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.

Activity:

L.H.S = `square`

= `square/sintheta + sintheta/costheta`

= `(cos^2theta + sin^2theta)/square`

= `1/(sintheta*costheta)`     ......`[cos^2theta + sin^2theta = square]`

= `1/sintheta xx 1/square`

= `square`

= R.H.S

रिकाम्या जागा भरा
बेरीज

उत्तर

L.H.S = cot θ + tan θ

= `costheta/sintheta + sintheta/costheta`

= `(cos^2theta + sin^2theta)/(sintheta*costheta)`

= `1/(sintheta*costheta)`     ......[cos2θ + sin2θ = 1]

= `1/sintheta xx 1/costheta`

= cosecθ × secθ

= R.H.S.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Trigonometry - Q.3 (A)

संबंधित प्रश्‍न

Prove the following trigonometric identities:

(i) (1 – sin2θ) sec2θ = 1

(ii) cos2θ (1 + tan2θ) = 1


Prove the following identities:

`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`


If tan A = n tan B and sin A = m sin B, prove that:

`cos^2A = (m^2 - 1)/(n^2 - 1)`


`cot theta/((cosec  theta + 1) )+ ((cosec  theta +1 ))/ cot theta = 2 sec theta `


`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`


If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`


If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2?


 Write True' or False' and justify your answer  the following : 

The value of sin θ+cos θ is always greater than 1 .


Prove the following identity :

`(1 - cos^2θ)sec^2θ = tan^2θ`


Prove the following identity : 

`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`


Prove the following identity : 

`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`


Without using trigonometric table , evaluate : 

`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`


Prove that  `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`


Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.


Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.


Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.


If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to 


Prove that

`(cot "A" + "cosec  A" - 1)/(cot"A" - "cosec  A" + 1) = (1 + cos "A")/"sin A"`


Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B


Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×