Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
उत्तर १
...
उत्तर २
LHS = `(1 + tan^2A) + (1 + 1/tan^2A)`
= `(1 + sin^2A/cos^2A) + (1 + 1/(sin^2A/cos^2A))`
= `((cos^2A + sin^2A)/(cos^2A)) + ((cos^2A + sin^2A)/(sin^2A))`
= `1/(1 - sin^2A) + 1/sin^2A` (∵ `cos^2A + sin^2A = 1`)
= `(sin^2A + 1 - sin^2A)/(sin^2A(1 - sin^2A)) = 1/(sin^2A - sin^4A)`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
Prove the following trigonometric identities.
`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`
Prove the following identities:
sec2 A + cosec2 A = sec2 A . cosec2 A
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`
If sec θ + tan θ = x, then sec θ =
Prove the following identity :
`cosA/(1 + sinA) = secA - tanA`
If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.