Advertisements
Advertisements
प्रश्न
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
उत्तर
LHS = `{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) `
=`{(cos^2 theta)/(1- cos^4 theta)+ (sin^2 theta)/(1- sin^4 theta)}(sin^2 theta cos ^2 theta)`
=`{cos^2 theta/((1-cos^2 theta)(1+ cos^2 theta)) + sin^2 theta/((1-sin^2 theta)(2+ sin^2 theta ))}(sin^2 theta cos^2 theta)`
=`[cot^2 theta/(1+ cos^2 theta) + tan^2 theta/(1+ sin^2 theta)]sin^2 theta cos^2 theta`
=`(cos^4 theta)/(1+ cos^2 theta)+( sin^4 theta) / (1+ sin^2 theta)`
=`((cos^2 theta)^2)/(1+ cos^2 theta)+ ((sin^2 theta)^2)/(1+ sin^2 theta)`
=`((1-sin^2 theta )^2)/(1+ cos^2 theta)+((1-cos^2 theta )^2)/(1+ sin^2 theta)`
=`((1-sin^2 theta )^2 (1+sin^2 )+ (1- cos^2 theta)^2 (1+ cos^2 theta))/((1+ sin^2 theta )( 1+ cos^2 theta))`
=`(cos^4 theta (1+sin^2 theta )+ sin^4 theta (1+cos^2theta))/(1+ sin^2 theta + cos^2 theta + sin^2 theta cos ^2 theta )`
=`(cos^4 theta cos^4 theta sin^2 theta+ sin^4 theta + sin^4 theta cos ^2 theta )/(1+1 sin^2 theta cos^2 theta)`
=`(cos^4 theta + sin^4 theta + sin^2 theta cos^2 theta (sin^2 theta + cos^2 theta))/(2+ sin^2 theta cos^2 theta)`
=`((cos^2 theta)^2 + ( sin^2 theta )^2 + sin^2 theta cos^2 theta (1))/(2+ sin^2 theta cos^2 theta)`
=`((cos^2 theta + sin^2 theta )^2 -2 sin ^2 theta cos^2 theta + sin^2 theta cos^2 theta (1))/(2 + sin^2 theta cos^2 theta)`
=`(1^2+ cos^2 theta sin^2 theta -2 cos^2 theta sin^2 theta)/(2+ sin^2 theta cos^2 theta)`
=`(1-cos^2 theta sin^2 theta)/(2+ sin^2 theta cos^2 theta)`
=RHS
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
(i) (1 – sin2θ) sec2θ = 1
(ii) cos2θ (1 + tan2θ) = 1
Prove the following trigonometric identities.
(sec2 θ − 1) (cosec2 θ − 1) = 1
Prove the following trigonometric identities.
`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2
Prove the following identities:
`1 - sin^2A/(1 + cosA) = cosA`
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
`(sec^2 theta -1)(cosec^2 theta - 1)=1`
Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:
sin θ × cosec θ = ______
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
Prove the following identity :
`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2 = 1`
If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
tan θ cosec2 θ – tan θ is equal to
Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`