Advertisements
Advertisements
प्रश्न
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
उत्तर
LHS = `cosA/(1 - tanA) + sin^2A/(sinA - cosA)`
= `cosA/(1 - sinA/cosA) + sin^2A/(sinA - cosA)`
= `cosA/((cosA - sinA)/(cosA)) + sin^2A/(sinA - cosA)`
= `cos^2A/((cosA - sinA)) - sin^2A/((cosA - sinA))`
= `(cos^2A - sin^2A)/(cosA - sinA) = ((cosA + sinA)(cosA - sinA))/((cosA - sinA))`
= (cosA + sinA)
APPEARS IN
संबंधित प्रश्न
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
Show that `sqrt((1-cos A)/(1 + cos A)) = sinA/(1 + cosA)`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
Prove the following identities:
`cosecA - cotA = sinA/(1 + cosA)`
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Prove that `(sin θ tan θ)/(1 - cos θ) = 1 + sec θ.`
Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .