Advertisements
Advertisements
प्रश्न
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`
उत्तर
L.H.S. = `sqrt((1 + sinA)/(1 - sinA))`
= `sqrt((1 + sinA)/(1 - sinA) xx (1 + sinA)/(1 + sinA)`
= `sqrt((1 + sinA)^2/(1 - sin^2A))`
= `sqrt((1 + sinA)^2/cos^2A)`
= `(1 + sinA)/cosA`
= `1/cosA + sinA/cosA`
= sec A + tan A = R.H.S.
APPEARS IN
संबंधित प्रश्न
Express the ratios cos A, tan A and sec A in terms of sin A.
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Prove the following trigonometric identities.
(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A
`(sec^2 theta -1)(cosec^2 theta - 1)=1`
`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`
Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α