Advertisements
Advertisements
Question
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`
Solution
L.H.S. = `sqrt((1 + sinA)/(1 - sinA))`
= `sqrt((1 + sinA)/(1 - sinA) xx (1 + sinA)/(1 + sinA)`
= `sqrt((1 + sinA)^2/(1 - sin^2A))`
= `sqrt((1 + sinA)^2/cos^2A)`
= `(1 + sinA)/cosA`
= `1/cosA + sinA/cosA`
= sec A + tan A = R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`
Prove the following trigonometric identities.
`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`
Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Without using trigonometric table , evaluate :
`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`
If tan θ = `7/24`, then to find value of cos θ complete the activity given below.
Activity:
sec2θ = 1 + `square` ......[Fundamental tri. identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`