English

Prove the following trigonometric identities. 1+secθsecθ=sin2θ1-cosθ - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`

Sum

Solution

We have to prove  `(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`

We know that, `sin^2 theta + cos^2 theta = 1`

`(1 + sec theta)/sec theta = (1 + 1/cos theta)/(1/cos theta)`

`= ((cos theta + 1)/cos theta)/(1/cos theta)`

`= (1 + cos theta)/1`

Multiplying the numerator and denominator by `(1 - cos theta)` we have

`(1 + sec theta)/sec theta  = ((1 + cos theta)(1 - cos theta))/(1- cos theta)`

`= (1 - cos^2 theta)/(1- cos theta)`

`= sin^2 theta/(1 - cos theta)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 29 | Page 44

RELATED QUESTIONS

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`


Prove the following identities:

`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`


`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`


`sqrt((1-cos theta)/(1+cos theta)) = (cosec  theta - cot  theta)`


`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`


If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1


Write the value of `( 1- sin ^2 theta  ) sec^2 theta.`


Write the value of `(1 - cos^2 theta ) cosec^2 theta`.


If `sec theta = x ,"write the value of tan"  theta`.


Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\] 


Prove the following identity :

tanA+cotA=secAcosecA 


Prove the following identity : 

`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`


If `x/(a cosθ) = y/(b sinθ)   "and"  (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that"  x^2/a^2 + y^2/b^2 = 1`


Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.


Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.


Prove that:

`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`


Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1


Choose the correct alternative:

1 + cot2θ = ? 


If 3 sin θ = 4 cos θ, then sec θ = ?


Prove the following trigonometry identity:

(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×