Advertisements
Advertisements
Question
Prove the following trigonometric identities.
`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`
Solution
We have to prove `(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`
We know that, `sin^2 theta + cos^2 theta = 1`
`(1 + sec theta)/sec theta = (1 + 1/cos theta)/(1/cos theta)`
`= ((cos theta + 1)/cos theta)/(1/cos theta)`
`= (1 + cos theta)/1`
Multiplying the numerator and denominator by `(1 - cos theta)` we have
`(1 + sec theta)/sec theta = ((1 + cos theta)(1 - cos theta))/(1- cos theta)`
`= (1 - cos^2 theta)/(1- cos theta)`
`= sin^2 theta/(1 - cos theta)`
RELATED QUESTIONS
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
Prove the following identities:
`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`
`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`
`sqrt((1-cos theta)/(1+cos theta)) = (cosec theta - cot theta)`
`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`
If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
If `sec theta = x ,"write the value of tan" theta`.
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
Prove the following identity :
tanA+cotA=secAcosecA
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
Prove that:
`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`
Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1
Choose the correct alternative:
1 + cot2θ = ?
If 3 sin θ = 4 cos θ, then sec θ = ?
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ