English

Choose the correct alternative: 1 + cot2θ = ? - Geometry Mathematics 2

Advertisements
Advertisements

Question

Choose the correct alternative:

1 + cot2θ = ? 

Options

  • tan2θ

  • sec2θ

  • cosec2θ

  • cos2θ

MCQ

Solution

1 + cot2θ = cosec2θ

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Q.1 (A)

RELATED QUESTIONS

 

If `sec alpha=2/sqrt3`  , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.

 

Express the ratios cos A, tan A and sec A in terms of sin A.


Prove the following trigonometric identities.

sec A (1 − sin A) (sec A + tan A) = 1


Prove the following trigonometric identity.

`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`


Prove the following trigonometric identities.

if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1


Prove the following identities:

`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`


`cot theta/((cosec  theta + 1) )+ ((cosec  theta +1 ))/ cot theta = 2 sec theta `


`(cos  ec^theta + cot theta )/( cos ec theta - cot theta  ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta  cot theta`


Write the value of `(sin^2 theta 1/(1+tan^2 theta))`. 


If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.


Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:

sin θ × cosec θ = ______


Prove the following identity :

tanA+cotA=secAcosecA 


Prove the following identities:

`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.


Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.


Prove the following identities.

(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2


Choose the correct alternative:

cot θ . tan θ = ?


If tan θ + cot θ = 2, then tan2θ + cot2θ = ?


tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

= `square (1 - (sin^2theta)/(tan^2theta))`

= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`

= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`

= `tan^2theta (1 - square)`

= `tan^2theta xx square`    .....[1 – cos2θ = sin2θ]

= R.H.S


Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.


The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×