Advertisements
Advertisements
Question
If `sec alpha=2/sqrt3` , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.
Solution
Given that α is in quadrant IV, where x is positive and y is negative.
`sec alpha=r/x=2/sqrt3`
`Let r=2k, `
`r^2=x^2+y^2`
`therefore(2k^2)=(sqrt(3k))^2+y^2`
`therefore y^2=4k^2-3k^2=k^2`
`therefore y=+-k`
`cosec alpha =r/y=(2k)/-k=-2`
Substituting the value of cosec ,we get
`(1-cosec alpha)/(1+cosec alpha)=(1-(-2))/(1+(-2))=(1+2)/(1-2)=3/-1 `
`(1-cosec alpha)/(1+cosec alpha)=-3`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities
`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) = (1 + sin^2 theta)/(1 - sin^2 theta)`
Prove the following trigonometric identities.
`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`
Prove the following trigonometric identities
tan2 A + cot2 A = sec2 A cosec2 A − 2
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
Prove the following identities:
`cosecA - cotA = sinA/(1 + cosA)`
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
`sec theta (1- sin theta )( sec theta + tan theta )=1`
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
Prove the following identity :
`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
Find the value of sin 30° + cos 60°.
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.