Advertisements
Advertisements
Question
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
Solution
LHS = `sqrt((1+sinA)/(1-sinA))`
`=sqrt((1+sinA)/(1-sinA)xx(1+sinA)/(1+sinA)`
`=sqrt((1+sinA)^2/(1-sin^2A))=sqrt((1+sinA)^2/cos^2A)`
`=(1+sinA)/cosA`
= sec A + tan A = RHS
APPEARS IN
RELATED QUESTIONS
Evaluate without using trigonometric tables:
`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`
Prove the following identities:
`(1 + sin A)/(1 - sin A) = (cosec A + 1)/(cosec A - 1)`
`(sec^2 theta-1) cot ^2 theta=1`
`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec theta)`
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`
Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
Prove the following identity :
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
Without using trigonometric identity , show that :
`cos^2 25^circ + cos^2 65^circ = 1`
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2.
Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.
Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
If cosA + cos2A = 1, then sin2A + sin4A = 1.
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.
If cot θ = `40/9`, find the values of cosec θ and sinθ,
We have, 1 + cot2θ = cosec2θ
1 + `square` = cosec2θ
1 + `square` = cosec2θ
`(square + square)/square` = cosec2θ
`square/square` = cosec2θ ......[Taking root on the both side]
cosec θ = `41/9`
and sin θ = `1/("cosec" θ)`
sin θ = `1/square`
∴ sin θ = `9/41`
The value is cosec θ = `41/9`, and sin θ = `9/41`