Advertisements
Advertisements
Question
Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.
Solution
LHS = `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°`
= `sin (90° - 20°)/(cos 20°) + (cosec(90° - 20°))/(sec 70°) - 2 cos 70° xx cosec 20°`
= `(cos 20°)/(cos 20°) + (sec 70°)/(sec 70°) - 2 cos 70° xx cosec 20°`
= 1 + 1 - 2cos (90° - 20°) . cosec 20°
= 2 - 2 sin 20°. `1/sin 20°`
= 2 - 2
= 0
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
(1 + cot A − cosec A) (1 + tan A + sec A) = 2
Given that:
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)
Show that one of the values of each member of this equality is sin α sin β sin γ
Show that : tan 10° tan 15° tan 75° tan 80° = 1
If x = a cos θ and y = b cot θ, show that:
`a^2/x^2 - b^2/y^2 = 1`
`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`
Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.