English

Express (Sin 67° + Cos 75°) in Terms of Trigonometric Ratios of the Angle Between 0° and 45°. - Mathematics

Advertisements
Advertisements

Question

Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.

Sum

Solution

(sin 67° + cos 75°)
= (sin (90°23°) + cos (90°15°))      .....( sin(90°θ) = cosθ and cos(90°θ) = sinθ)
= (cos 23°+ sin 15°)

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) 30/4/3

RELATED QUESTIONS

Prove the following identities:

`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`

`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`


Prove that ` \frac{\sin \theta -\cos \theta +1}{\sin\theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta }` using the identity sec2 θ = 1 + tan2 θ.


Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`


Prove the following identities:

`cosecA + cotA = 1/(cosecA - cotA)`


Prove that:

(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B


Prove the following identities:

`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`


Prove that:

`sqrt(sec^2A + cosec^2A) = tanA + cotA`


`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`


`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `


`If sin theta = cos( theta - 45° ),where   theta   " is   acute, find the value of "theta` .


Prove the following identity : 

`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`


Prove the following identity : 

`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`


Find the value of ( sin2 33° + sin2 57°).


If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.


Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.


If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1


If tan θ = `7/24`, then to find value of cos θ complete the activity given below.

Activity:

sec2θ = 1 + `square`    ......[Fundamental tri. identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square/576`

sec2θ = `square/576`

sec θ = `square` 

cos θ = `square`     .......`[cos theta = 1/sectheta]`


Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`


Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`


Show that: `tan "A"/(1 + tan^2 "A")^2 + cot "A"/(1 + cot^2 "A")^2 = sin"A" xx cos"A"`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×