Advertisements
Advertisements
Question
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
Solution
(sin 67° + cos 75°)
= (sin (90°−23°) + cos (90°−15°)) .....(∵ sin(90°−θ) = cosθ and cos(90°−θ) = sinθ)
= (cos 23°+ sin 15°)
RELATED QUESTIONS
Prove the following identities:
`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`
`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`
Prove that ` \frac{\sin \theta -\cos \theta +1}{\sin\theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta }` using the identity sec2 θ = 1 + tan2 θ.
Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`
Prove the following identities:
`cosecA + cotA = 1/(cosecA - cotA)`
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
Prove the following identities:
`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`
`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
Find the value of ( sin2 33° + sin2 57°).
If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
If tan θ = `7/24`, then to find value of cos θ complete the activity given below.
Activity:
sec2θ = 1 + `square` ......[Fundamental tri. identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`
Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`
Show that: `tan "A"/(1 + tan^2 "A")^2 + cot "A"/(1 + cot^2 "A")^2 = sin"A" xx cos"A"`