Advertisements
Advertisements
Question
Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`
Solution
L.H.S = `(1 + sec "A")/"sec A"`
= `1/"sec A" + "sec A"/"sec A"`
= cos A + 1
= `(1 + cos "A") xx (1 - cos"A")/(1 - cos"A")`
= `(1 - cos^2"A")/(1 - cos"A")`
= `(sin^2"A")/(1 - cos"A")` .......`[(because sin^2"A" + cos^2"A" = 1),(therefore 1 - cos^2"A" = sin^2"A")]`
= R.H.S
∴ `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`
APPEARS IN
RELATED QUESTIONS
If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2
Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
Prove the following identities:
`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
\[\frac{x^2 - 1}{2x}\] is equal to
Prove the following identity :
`cosA/(1 + sinA) = secA - tanA`
Without using trigonometric identity , show that :
`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.
Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`
`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.
Activity:
`5/(sin^2theta) - 5cot^2theta`
= `square (1/(sin^2theta) - cot^2theta)`
= `5(square - cot^2theta) ......[1/(sin^2theta) = square]`
= 5(1)
= `square`
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
tan θ × `sqrt(1 - sin^2 θ)` is equal to: