English

Prove That: (Cos^3 θ + Sin^3 θ)/(Cos θ + Sin θ) + (Cos^3 θ - Sin^3 θ)/(Cos θ - Sin θ) = 2 - Mathematics

Advertisements
Advertisements

Question

Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`

Sum

Solution

LHS = `(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ)`

= `((cos θ + sin θ)(cos^2 θ + sin^2 θ - cos θ sin θ))/(cos θ + sin θ) + ((cos θ - sin θ)(cos^2 θ + sin^2 θ - cos θ sin θ))/(cos θ - sin θ)`

= 1 - sin θ cos θ + 1 + sin θ cos θ

= 2 

= RHS

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Trigonometry - Exercise 2

APPEARS IN

ICSE Mathematics [English] Class 10
Chapter 18 Trigonometry
Exercise 2 | Q 65.4
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×