Advertisements
Advertisements
Question
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
Solution
L.H.S
= `(tantheta)/(1-cottheta) + (cottheta)/(1-tantheta) `
= `(sintheta/costheta)/(1-costheta/sintheta) + (costheta/sintheta)/(1-sintheta/costheta)`
= `(sintheta/costheta)/((sintheta-costheta)/(sintheta))+ (costheta/sintheta)/((costheta-sintheta)/costheta)`
= `(sin^2theta)/(costheta(sintheta-costheta)) - (cos^2theta)/(sintheta(sintheta-costheta))`
= `1/(sintheta - costheta)[(sin^2theta)/costheta - cos^2theta/sintheta]`
= `(1/(sintheta-costheta))[(sin^3theta-cos^3theta)/(sinthetacostheta)]`
= `(1/(sintheta-costheta))[((sintheta-costheta)(sin^2theta+cos^2theta+sinthetacostheta))/(sinthetacostheta)]`
= `((1+sinthetacostheta))/((sinthetacostheta))`
= sec θ cosec θ + 1
= R.H.S
APPEARS IN
RELATED QUESTIONS
If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2
Prove that ` \frac{\sin \theta -\cos \theta +1}{\sin\theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta }` using the identity sec2 θ = 1 + tan2 θ.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
Prove the following trigonometric identities
sec4 A(1 − sin4 A) − 2 tan2 A = 1
Prove the following identities:
`(1 + sin A)/(1 - sin A) = (cosec A + 1)/(cosec A - 1)`
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
`(1-cos^2theta) sec^2 theta = tan^2 theta`
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`
`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`
Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`
If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.
If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`
If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`
Write the value of `3 cot^2 theta - 3 cosec^2 theta.`
If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`
If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2?
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Prove the following identity :
`cosecA + cotA = 1/(cosecA - cotA)`
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
Prove the following identity :
`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`
For ΔABC , prove that :
`tan ((B + C)/2) = cot "A/2`
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.
If x sin3θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ , then show that x2 + y2 = 1.
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`
If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`
Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ
sec θ when expressed in term of cot θ, is equal to ______.
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ