English

Prove the following identities: sinA+cosAsinA-cosA+sinA-cosAsinA+cosA=22sin2A-1 - Mathematics

Advertisements
Advertisements

Question

Prove the following identities:

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`

Sum

Solution

L.H.S. = `(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA)`

= `((sinA + cosA)^2 + (sinA - cosA)^2)/((sinA - cosA)(sinA + cosA))`

= `(sin^2A + cos^2A + 2sinAcosA + sin^2A + cos^2A - 2sinA cosA)/(sin^2A - cos^2A)`

= `(2(sin^2A + cos^2A))/(sin^2A - cos^2A)`

= `2/(sin^2A - cos^2A)`   ...[sin2A + cos2A = 1]

= `2/(sin^2A - cos^2A)`

= `2/(sin^2A - (1 - sin^2A))`

= `2/(2sin^2A - 1)` = R.H.S.

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Trigonometrical Identities - Exercise 21 (A) [Page 325]

APPEARS IN

Selina Mathematics [English] Class 10 ICSE
Chapter 21 Trigonometrical Identities
Exercise 21 (A) | Q 45 | Page 325
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×