Advertisements
Advertisements
Question
Prove the following identity :
`cosecA + cotA = 1/(cosecA - cotA)`
Solution
LHS = cosecA + cotA
= `(cosecA + cotA)/1 . (cosecA - cotA)/(cosecA - cotA)`
= `(cosec^2A - cot^2A)/(cosecA - cotA) = (1 + cot^2A - cot^2A)/(cosecA - cotA)`
= `1/(cosecA - cotA)`
APPEARS IN
RELATED QUESTIONS
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
Prove the following trigonometric identities.
sec6θ = tan6θ + 3 tan2θ sec2θ + 1
Prove the following identities:
(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A
`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.
Choose the correct alternative:
sec2θ – tan2θ =?
If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ
Activity:
`square` = 1 + tan2θ ......[Fundamental trigonometric identity]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`