Advertisements
Advertisements
प्रश्न
Prove the following identity :
`cosecA + cotA = 1/(cosecA - cotA)`
उत्तर
LHS = cosecA + cotA
= `(cosecA + cotA)/1 . (cosecA - cotA)/(cosecA - cotA)`
= `(cosec^2A - cot^2A)/(cosecA - cotA) = (1 + cot^2A - cot^2A)/(cosecA - cotA)`
= `1/(cosecA - cotA)`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
(i) (1 – sin2θ) sec2θ = 1
(ii) cos2θ (1 + tan2θ) = 1
Prove that `cosA/(1+sinA) + tan A = secA`
Evaluate without using trigonometric tables:
`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`
Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`
`(1-cos^2theta) sec^2 theta = tan^2 theta`
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
Prove the following identity :
`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`