Advertisements
Advertisements
प्रश्न
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
उत्तर
`((1 + tan^2A)cotA)/(cosec^2A)`
= `(sec^2AcotA)/(cosec^2A) ......(∴ sec^2A = 1 + tan^2A)`
= `(1/cos^2A . cosA/sinA)/(1/sin^2A) = 1/((cosAsinA)/(1/sin^2A)`
= `sinA/cosA = tanA`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identity.
`cos^2 A + 1/(1 + cot^2 A) = 1`
Prove the following trigonometric identities.
(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
Choose the correct alternative:
cos 45° = ?
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.