Advertisements
Advertisements
प्रश्न
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
उत्तर
LHS = `tan^3 θ/(1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ)`
= `tan^3 θ/sec^2 θ + cot^3 θ/(cosec^2 θ)`
= 1 + tan2θ = sec2θ; 1 + cot2θ = cosec2θ
= `sin^3 θ/cos^3 θ xx cos^2 θ + cos^3 θ/sin^3 θ xx sin^2 θ`
= `sin^3 θ/cos θ + cos^3 θ/sin θ`
= `(sin^4 θ + cos^4 θ)/(cos θ.sin θ)`
= `((sin^2θ)^2 + (cos^2θ)^2)/(sin θ.cos θ)`
= `((sin^2 θ + cos^2 θ)^2 - 2 sin^2 θ. cos^2 θ)/(sin θ.cos θ)` ...[a2 + b2 = (a + b)2 − 2ab]
= `((1)^2 - 2sin^2θ. cos^2θ)/(sin θ.cos θ)`
= `(1 - 2sin^2θ. cos^2θ)/(sinθ.cosθ)`
= `1/(sinθ.cosθ) - (2sin^2θ. cos^2θ)/(sinθ.cosθ)`
= secθ. cosecθ − 2 sinθ cosθ
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities.
`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`
Prove the following trigonometric identities.
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
If sec θ + tan θ = x, then sec θ =
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
Find A if tan 2A = cot (A-24°).
sin2θ + sin2(90 – θ) = ?
Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`