Advertisements
Advertisements
प्रश्न
Find A if tan 2A = cot (A-24°).
उत्तर
Given :
tan 2A = cot (A-24°)
implies that tan 2A = tan [90° - (A -24°)]
implies that tan 2A = tan [90° - A + 24°]
implies that tan 2A = tan [114° - A ]
implies that 2A = 114° - A
implies that 3A = 114°
implies that A = `(114°)/3`
implies that A = 38°
संबंधित प्रश्न
If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.
Prove the following trigonometric identities.
`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
`(sec^2 theta -1)(cosec^2 theta - 1)=1`
From the figure find the value of sinθ.
Prove the following identity :
secA(1 + sinA)(secA - tanA) = 1
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Prove the following identity :
`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`
Prove the following identity :
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
Prove that:
`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
If tan θ × A = sin θ, then A = ?
Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.
Activity:
L.H.S = `square`
= `cos^2theta xx square .....[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= R.H.S
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ
Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0
Show that tan4θ + tan2θ = sec4θ – sec2θ.