Advertisements
Advertisements
प्रश्न
Prove that:
`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`
उत्तर
LHS = `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A)`
= `((sin A + cos A)^2 + (sin A - cos A)^2)/((sin A - cos A)(sin A + cos A))`
= `(sin^2 A + cos^2 A + 2 sin Acos A + sin^2 A + cos^2 A - 2sin A. cos A)/(sin^2 A - cos^2 A)`
= `(2(sin^2A + cos^2 A))/(sin^2 A - cos^2 A)`
= `(2 xx 1)/(sin^2 A - (1- sin^2 A)`
= `2/(sin^2 A - 1+ sin^2 A)`
= `2/(2 sin^2 A - 1)`
= RHS
Hence proved.
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
Prove the following identities:
`(sinAtanA)/(1 - cosA) = 1 + secA`
Prove that:
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2
`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
Prove that:
Sin4θ - cos4θ = 1 - 2cos2θ
If cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
Prove the following identity :
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove the following identity :
`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`
If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`
Prove that:
tan (55° + x) = cot (35° – x)
If cosθ = `5/13`, then find sinθ.
Prove that `(sin θ tan θ)/(1 - cos θ) = 1 + sec θ.`
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α
If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.