Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
उत्तर
We have to prove `(tan A + tan B)/(cot A + cot B) = tan A tan B`
Now
`(tan A + tan B)/(cot A + cot B) = (tan A + tan B)/(1/tan A + 1/tanB)`
`= (tan A + tan B)/((tan B + tan A)/(tan A tan B))`
= tan A tan B
Hence proved.
APPEARS IN
संबंधित प्रश्न
if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`
Prove the following identities:
`1 - sin^2A/(1 + cosA) = cosA`
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
`(cos theta cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`
If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.
If m = ` ( cos theta - sin theta ) and n = ( cos theta + sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
Write the value of `3 cot^2 theta - 3 cosec^2 theta.`
Prove the following identity :
`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
Without using trigonometric identity , show that :
`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`
Prove that:
tan (55° + x) = cot (35° – x)
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
Prove the following identities.
sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1
If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to
Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.
Eliminate θ if x = r cosθ and y = r sinθ.
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ