मराठी

If M = ` ( Cos Theta - Sin Theta ) and N = ( Cos Theta + Sin Theta ) "Then Show That" Sqrt(M/N) + Sqrt(N/M) = 2/Sqrt(1-tan^2 Theta)`. - Mathematics

Advertisements
Advertisements

प्रश्न

If m = ` ( cos theta - sin theta ) and n = ( cos theta +  sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.

उत्तर

LBS = `sqrt(m/n) + sqrt(n/m)`

       =`sqrt(m)/sqrt(n) + sqrt(m)/sqrt(n)`

       =`(m+n)/sqrt(mn)`

       =`((cos theta - sin theta ) + ( cos theta + sin theta ))/sqrt(( cos theta - sin theta ) ( cos theta + sin theta ))`

      =`(2 cos theta )/ sqrt( cos ^2 theta - sin^2 theta)`

      =`(2 cos theta ) / sqrt( cos ^ theta - sin^ theta)`

     =` ((( 2 cos theta )/( cos theta)))/((sqrt(cos^2 theta - sin^2 theta)/(cos theta))`

     =`2/(sqrt((cos^2 theta)/(cos^2 theta) - ( sin^2 theta) /( cos^2 theta))`

     =`2/sqrt(1- tan^2 theta)`

   = RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Trigonometric Identities - Exercises 2

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 8 Trigonometric Identities
Exercises 2 | Q 15

संबंधित प्रश्‍न

Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.


Prove the following trigonometric identities.

`(1 + cos A)/sin A = sin A/(1 - cos A)`


Prove the following trigonometric identities.

`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`


Prove the following trigonometric identities.

(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A


Prove that:

`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`


If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A


If ` cot A= 4/3 and (A+ B) = 90°  `  ,what is the value of tan B?


If sinθ = `11/61`, find the values of cosθ using trigonometric identity.


 Write True' or False' and justify your answer  the following : 

The value of  \[\cos^2 23 - \sin^2 67\]  is positive . 


If cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2 


Prove the following identity :

cosecθ(1 + cosθ)(cosecθ - cotθ) = 1


Prove the following identity :

`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`


Prove the following identity :

`cos^4A - sin^4A = 2cos^2A - 1`


Prove the following identity : 

`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`


Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.


If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to 


Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ


Prove that

`(cot "A" + "cosec  A" - 1)/(cot"A" - "cosec  A" + 1) = (1 + cos "A")/"sin A"`


If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.


sec θ when expressed in term of cot θ, is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×