Advertisements
Advertisements
प्रश्न
If m = ` ( cos theta - sin theta ) and n = ( cos theta + sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.
उत्तर
LBS = `sqrt(m/n) + sqrt(n/m)`
=`sqrt(m)/sqrt(n) + sqrt(m)/sqrt(n)`
=`(m+n)/sqrt(mn)`
=`((cos theta - sin theta ) + ( cos theta + sin theta ))/sqrt(( cos theta - sin theta ) ( cos theta + sin theta ))`
=`(2 cos theta )/ sqrt( cos ^2 theta - sin^2 theta)`
=`(2 cos theta ) / sqrt( cos ^ theta - sin^ theta)`
=` ((( 2 cos theta )/( cos theta)))/((sqrt(cos^2 theta - sin^2 theta)/(cos theta))`
=`2/(sqrt((cos^2 theta)/(cos^2 theta) - ( sin^2 theta) /( cos^2 theta))`
=`2/sqrt(1- tan^2 theta)`
= RHS
APPEARS IN
संबंधित प्रश्न
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
Prove the following trigonometric identities.
`(1 + cos A)/sin A = sin A/(1 - cos A)`
Prove the following trigonometric identities.
`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`
Prove the following trigonometric identities.
(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A
Prove that:
`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
If sinθ = `11/61`, find the values of cosθ using trigonometric identity.
Write True' or False' and justify your answer the following :
The value of \[\cos^2 23 - \sin^2 67\] is positive .
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
Prove the following identity :
cosecθ(1 + cosθ)(cosecθ - cotθ) = 1
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Prove the following identity :
`cos^4A - sin^4A = 2cos^2A - 1`
Prove the following identity :
`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`
Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.
If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to
Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ
Prove that
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"`
If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.
sec θ when expressed in term of cot θ, is equal to ______.