Advertisements
Advertisements
प्रश्न
If m = ` ( cos theta - sin theta ) and n = ( cos theta + sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.
उत्तर
LBS = `sqrt(m/n) + sqrt(n/m)`
=`sqrt(m)/sqrt(n) + sqrt(m)/sqrt(n)`
=`(m+n)/sqrt(mn)`
=`((cos theta - sin theta ) + ( cos theta + sin theta ))/sqrt(( cos theta - sin theta ) ( cos theta + sin theta ))`
=`(2 cos theta )/ sqrt( cos ^2 theta - sin^2 theta)`
=`(2 cos theta ) / sqrt( cos ^ theta - sin^ theta)`
=` ((( 2 cos theta )/( cos theta)))/((sqrt(cos^2 theta - sin^2 theta)/(cos theta))`
=`2/(sqrt((cos^2 theta)/(cos^2 theta) - ( sin^2 theta) /( cos^2 theta))`
=`2/sqrt(1- tan^2 theta)`
= RHS
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `
If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`
If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Evaluate
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
Prove the following trigonometric identities.
(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
Prove the following identities:
sec2 A + cosec2 A = sec2 A . cosec2 A
Prove that:
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
Prove that:
`(sin^2θ)/(cosθ) + cosθ = secθ`
Prove the following identities.
sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to
(sec θ + tan θ) . (sec θ – tan θ) = ?
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`
If cos A + cos2A = 1, then sin2A + sin4 A = ?