हिंदी

(sec θ + tan θ) . (sec θ – tan θ) = ? - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

(sec θ + tan θ) . (sec θ – tan θ) = ?

योग

उत्तर

(sec θ + tan θ)(sec θ – tan θ)

= sec2θ – tan2θ  ......[∵ (a + b)(a – b) = a2 – b2]

= 1       ......`[(because 1 + tan^2theta = sec^2theta),(therefore sec^2theta - tan^2theta = 1)]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Q.1 (B)

संबंधित प्रश्न

Prove the following trigonometric identities.

if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1


Prove that  `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2` 


Prove the following identities:

(1 + cot A – cosec A)(1 + tan A + sec A) = 2


Prove that:

2 sin2 A + cos4 A = 1 + sin4


Prove the following identities:

`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`


`(cos  ec^theta + cot theta )/( cos ec theta - cot theta  ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta  cot theta`


`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`


`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`


 Write True' or False' and justify your answer the following :

The value of the expression \[\sin {80}^° - \cos {80}^°\] 


\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to 


If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2


Prove the following identity :

secA(1 + sinA)(secA - tanA) = 1


Prove the following identity :

`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`


Prove the following identity : 

`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`


If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn 


Prove that sin4A – cos4A = 1 – 2cos2A


Prove that sec2θ – cos2θ = tan2θ + sin2θ


`sqrt((1 - cos^2theta) sec^2 theta) = tan theta` 


If sin A = `1/2`, then the value of sec A is ______.


Show that, cotθ + tanθ = cosecθ × secθ

Solution :

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×