Advertisements
Advertisements
प्रश्न
`(cos ec^theta + cot theta )/( cos ec theta - cot theta ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta cot theta`
उत्तर
Here, `( cosec theta + cot theta )/( cosec theta - cot theta)`
= `((cosec theta + cot theta) ( cosec theta + cot theta ))/(( cosec theta - cot theta ) ( cosec theta + cot theta))`
=` ((cosec theta + cot theta)^2)/(( cosec ^2 theta - cot^2 theta))`
=`((cosec theta + cot theta )^2) /1`
=`(cosec theta + cot theta )^2`
Again , `( cosec theta + cot theta )^2`
= ` cosec^2 theta + cot^2 theta + 2 cosec theta cot theta `
=` 1+cot^2 theta + cot^2 theta + 2 cosec theta cot theta (∵ cosec^2 theta - cot^2 theta =1)`
=` 1+2 cot^2 theta + 2 cosec theta cot theta `
APPEARS IN
संबंधित प्रश्न
If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
Prove the following identities:
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove the following identities:
`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
`(1-cos^2theta) sec^2 theta = tan^2 theta`
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
Prove that:
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
tan θ cosec2 θ – tan θ is equal to
Choose the correct alternative:
cot θ . tan θ = ?
Choose the correct alternative:
cos 45° = ?
If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`
Eliminate θ if x = r cosθ and y = r sinθ.