Advertisements
Advertisements
प्रश्न
tan θ cosec2 θ – tan θ is equal to
विकल्प
sec θ
cot2 θ
sin θ
cot θ
उत्तर
cot θ
Explanation;
Hint:
tan θ cosec2 θ – tan θ = tan θ (cosec2 θ – 1)
= `tan theta xx cot^2 theta`
= `1/cot theta xx cot^2 theta`
= cot θ
APPEARS IN
संबंधित प्रश्न
`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`
Prove the following trigonometric identities.
`(cos^2 theta)/sin theta - cosec theta + sin theta = 0`
Prove the following trigonometric identities.
`(1 + cos A)/sin A = sin A/(1 - cos A)`
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.