Advertisements
Advertisements
प्रश्न
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
विकल्प
\[\pm \sqrt{a^2 + b^2 + c^2}\]
\[\pm \sqrt{a^2 + b^2 - c^2}\]
\[\pm \sqrt{c^2 - a^2 - b^2}\]
None of these
उत्तर
Given:
`a cosθ- b sinθ=c`
Squaring on both sides, we have
`(a cosθ-b sinθ ^2)=c^2`
`⇒ a^2 cos^2 θ+b^2 sin^2 θ-2. a cos θ. b sinθ=c^2`
``⇒a^2(1-sin ^2 θ)+b^2(1-cos^2θ)-2.a cosθ. b sin θ=c^2`
``⇒a^2-a^2 sin^2θ+b^2 cos^2 θ-2.acosθ. b sinθ=c^2`
``⇒-a^2 sin^2 θ-b^2 cos^2 θ-2 a cosθ. b sin θ=-a^2-b^2+c^2`
``⇒-(a^2 sin^2 θ+b^2 cos^2θ+2.a cosθ.b sin θ)=-(a^2+b^2-c^2)`
``⇒a^2 sin^2 θ+b^2 cos^2 θ+2.a sin θ.b cos θ=a^2+b^2-c^2`
``⇒(a sin θ+b cosθ)^2=a^2+b^2-c^2`
``⇒a sin θ+b cos θ=+- sqrt a^2+b^2-c^2`
APPEARS IN
संबंधित प्रश्न
Prove that:
sec2θ + cosec2θ = sec2θ x cosec2θ
Prove the following trigonometric identities.
`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
Prove that:
`cot^2A/(cosecA - 1) - 1 = cosecA`
Prove that:
cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A
Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`
Simplify : 2 sin30 + 3 tan45.
Write the value of cosec2 (90° − θ) − tan2 θ.
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2.
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2.
Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.
Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.
Prove that: `1/(sec θ - tan θ) = sec θ + tan θ`.
Prove the following identities.
sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1
If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1
If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4
Prove that `"cosec" θ xx sqrt(1 - cos^2theta)` = 1
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ