Advertisements
Advertisements
प्रश्न
Prove that:
cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A
उत्तर
L.H.S. = cos A (1 + cot A) + sin A (1 + tan A)
= `cosA(1 + cosA/sinA) + sinA(1 + sinA/cosA)`
= `(cosA(sinA + cosA))/sinA + (sinA(cosA + sinA))/cosA`
= `(sinA + cosA)[cosA/sinA + sinA/cosA]`
= `(sinA + cosA)[(cos^2A + sin^2A)/(sinAcosA)]`
= `(sinA + cosA) xx 1/(sinAcosA)`
= `(sinA + cosA)/(sinAcosA)` ...[∵ cos2θ + sin2θ = 1]
= `sinA/(sinAcosA) + cosA/(sinAcosA)`
= `1/cosA + 1/sinA`
= sec A + cosec A = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
Prove that:
`cot^2A/(cosecA - 1) - 1 = cosecA`
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
What is the value of 9cot2 θ − 9cosec2 θ?
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.