Advertisements
Advertisements
प्रश्न
Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.
उत्तर
LHS = `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ)`
= `(tan θ)/(tan θ) + ( cosec θ. cos θ)/(cosθ. cosec θ)`
= 1 + 1 = 2
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1
Prove the following identities:
`cosecA - cotA = sinA/(1 + cosA)`
`cot^2 theta - 1/(sin^2 theta ) = -1`a
cosec4θ − cosec2θ = cot4θ + cot2θ
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
If sec θ = `25/7`, then find the value of tan θ.
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ
Show that: `tan "A"/(1 + tan^2 "A")^2 + cot "A"/(1 + cot^2 "A")^2 = sin"A" xx cos"A"`