Advertisements
Advertisements
प्रश्न
cosec4θ − cosec2θ = cot4θ + cot2θ
उत्तर १
LHS = cosec4θ − cosec2θ
LHS = cosec2θ (cosec2θ − 1)
`"LHS" = (cot^2θ + 1)cot^2θ ...{(cot^2θ + 1 = cosec^2θ),(∵ cot^2θ = cosec^2θ - 1):}`
LHS = cot4θ + cot2θ
RHS = cot4θ + cot2θ
RHS = LHS
Hence proved.
उत्तर २
RHS = cot4θ + cot2θ
RHS = cot2θ (cot2θ + 1)
`"RHS"=(cosec^2θ-1)cosec^2θ ...{(cot^2θ+1=cosec^2θ),(∵ cot^2θ=cosec^2θ-1):}`
RHS = cosec4θ − cosec2θ
LHS = cosec4θ − cosec2θ
RHS = LHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,
Prove the following trigonometric identities.
`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
Prove the following identities:
`(secA - tanA)/(secA + tanA) = 1 - 2secAtanA + 2tan^2A`
Prove the following identities:
`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`
Write the value of tan10° tan 20° tan 70° tan 80° .
Write the value of cos1° cos 2°........cos180° .
From the figure find the value of sinθ.
2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
Choose the correct alternative:
1 + tan2 θ = ?
Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tan2 θ + cot2 θ.
If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.
Choose the correct alternative:
1 + cot2θ = ?
Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.
Activity:
L.H.S = `square`
= `cos^2theta xx square .....[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= R.H.S
If tan θ = `9/40`, complete the activity to find the value of sec θ.
Activity:
sec2θ = 1 + `square` ......[Fundamental trigonometric identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square`
sec θ = `square`
Prove that `sec"A"/(tan "A" + cot "A")` = sin A
Prove that
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A