हिंदी

Cosec4θ + cosec2θ = cot4θ + cot2θ - Mathematics

Advertisements
Advertisements

प्रश्न

cosec4θ − cosec2θ = cot4θ + cot2θ

योग

उत्तर १

LHS = cosec4θ − cosec2θ

LHS = cosec2θ (cosec2θ − 1)

`"LHS" = (cot^2θ + 1)cot^2θ     ...{(cot^2θ + 1 = cosec^2θ),(∵ cot^2θ = cosec^2θ - 1):}`

LHS = cot4θ + cot2θ

RHS = cot4θ + cot2θ

RHS = LHS 

Hence proved.

shaalaa.com

उत्तर २

RHS = cot4θ + cot2θ

RHS = cot2θ (cot2θ + 1) 

`"RHS"=(cosec^2θ-1)cosec^2θ  ...{(cot^2θ+1=cosec^2θ),(∵ cot^2θ=cosec^2θ-1):}`

RHS = cosec4θ − cosec2θ

LHS = cosec4θ − cosec2θ

RHS = LHS 

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Trigonometric Identities - Exercises 1

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 8 Trigonometric Identities
Exercises 1 | Q 17.3

संबंधित प्रश्न

If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,


Prove the following trigonometric identities.

`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`


Prove the following identities:

`((1 + tan^2A)cotA)/(cosec^2A) = tan A`


Prove the following identities:

`(secA - tanA)/(secA + tanA) = 1 - 2secAtanA + 2tan^2A`


Prove the following identities:

`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`


Write the value of tan10° tan 20° tan 70° tan 80° .


Write the value of cos1° cos 2°........cos180° .


From the figure find the value of sinθ.


2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to 


Prove the following Identities :

`(cosecA)/(cotA+tanA)=cosA`


Prove the following identity : 

`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq


Choose the correct alternative:

1 + tan2 θ = ?


Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tanθ + cotθ. 


If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.


Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.


Choose the correct alternative:

1 + cot2θ = ? 


Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.

Activity:

L.H.S = `square`

= `cos^2theta xx square    .....[1 + tan^2theta = square]`

= `(cos theta xx square)^2`

= 12

= 1

= R.H.S


If tan θ = `9/40`, complete the activity to find the value of sec θ.

Activity:

sec2θ = 1 + `square`     ......[Fundamental trigonometric identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square` 

sec θ = `square` 


Prove that `sec"A"/(tan "A" + cot "A")` = sin A


Prove that

sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×