Advertisements
Advertisements
प्रश्न
`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`
उत्तर
LHS = `(1- tan^2 theta)/(1+ tan^2 theta)`
=`(1-(sin^2 theta)/(cos^2 theta))/(1+(sin^2 theta)/(cos^2 theta))`
=`(cos^2 theta- sin^2 theta)/(cos^2 theta+ sin ^2 theta)`
=`(cos^2 theta+sin^2 theta)/1`
=`cos^2 theta- sin^2 theta`
= RHS
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
Prove the following trigonometric identities.
`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
Prove the following identities:
`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
9 sec2 A − 9 tan2 A is equal to
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
Prove that :(sinθ+cosecθ)2+(cosθ+ secθ)2 = 7 + tan2 θ+cot2 θ.
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ) + cos2 θ.
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to
Choose the correct alternative:
sin θ = `1/2`, then θ = ?
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ
Prove that sin4A – cos4A = 1 – 2cos2A
Prove that
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"`
Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`