हिंदी

`(1+ Tan^2 Theta)/(1+ Tan^2 Theta)= (Cos^2 Theta - Sin^2 Theta)` - Mathematics

Advertisements
Advertisements

प्रश्न

`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`

उत्तर

LHS = `(1- tan^2 theta)/(1+ tan^2 theta)`

      =`(1-(sin^2 theta)/(cos^2 theta))/(1+(sin^2 theta)/(cos^2 theta))`

      =`(cos^2 theta- sin^2 theta)/(cos^2 theta+ sin ^2 theta)`

     =`(cos^2 theta+sin^2 theta)/1`

    =`cos^2 theta- sin^2 theta`

    = RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Trigonometric Identities - Exercises 1

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 8 Trigonometric Identities
Exercises 1 | Q 18.1

संबंधित प्रश्न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`sqrt((1+sinA)/(1-sinA)) = secA + tanA`


Prove the following trigonometric identities.

`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`


Prove the following trigonometric identities.

`1/(1 + sin A) + 1/(1 - sin A) =  2sec^2 A`


Prove the following identities:

`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`


If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]


9 sec2 A − 9 tan2 A is equal to


Prove the following identity : 

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`


Prove the following identity :

`1/(tanA + cotA) = sinAcosA`


Prove the following identity : 

`sqrt(cosec^2q - 1) = "cosq  cosecq"`


Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A


Prove that :(sinθ+cosecθ)2+(cosθ+ secθ)2 = 7 + tan2 θ+cotθ.


Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.


Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ)  +  cos2 θ.


Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.


a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to


Choose the correct alternative:

sin θ = `1/2`, then θ = ?


Prove that `1/("cosec"  theta - cot theta)` = cosec θ + cot θ


Prove that sin4A – cos4A = 1 – 2cos2A


Prove that

`(cot "A" + "cosec  A" - 1)/(cot"A" - "cosec  A" + 1) = (1 + cos "A")/"sin A"`


Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×