рд╣рд┐рдВрджреА

`(1-tan^2 Theta)/(Cot^2-1) = Tan^2 Theta` - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`

рдЙрддреНрддрд░

LHS = `(1- tan^2 theta)/(cot^2 theta-1)`

      =`(1-(sin^2 theta)/(cos^2 theta))/((cos^2 theta )/(sin^2 theta)-1)`

      =`((cos^2 theta - sin^2 theta)/(cos^2 theta))/((cos^2theta-sin^2 theta)/(sin^2 theta))`

     =`(sin^2 theta)/(cos^2 theta)`

     = tan2 ЁЭЬГ 
     = RHS

shaalaa.com
  рдХреНрдпрд╛ рдЗрд╕ рдкреНрд░рд╢реНрди рдпрд╛ рдЙрддреНрддрд░ рдореЗрдВ рдХреЛрдИ рддреНрд░реБрдЯрд┐ рд╣реИ?
рдЕрдзреНрдпрд╛рдп 8: Trigonometric Identities - Exercises 1

APPEARS IN

рдЖрд░рдПрд╕ рдЕрдЧреНрд░рд╡рд╛рд▓ Mathematics [English] Class 10
рдЕрдзреНрдпрд╛рдп 8 Trigonometric Identities
Exercises 1 | Q 18.2

рд╡реАрдбрд┐рдпреЛ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [6]

рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди

Prove the following trigonometric identities.

`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`


Prove the following trigonometric identities.

`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`


Prove that  `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2` 


Prove the following identities:

(1 + cot A – cosec A)(1 + tan A + sec A) = 2


Prove that:

(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A


`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`


If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`


If `secθ = 25/7 ` then find tanθ.


What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]


If sin θ − cos θ = 0 then the value of sin4θ + cos4θ


Prove the following identity : 

`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`


Prove the following identity :

`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`


Prove that  `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`


Find the value of ( sin2 33° + sin2 57°).


Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .


Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`


Prove the following identities.

cot θ + tan θ = sec θ cosec θ


Prove the following identities.

sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1


Choose the correct alternative:

cos θ. sec θ = ?


Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)


Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×