Advertisements
Advertisements
प्रश्न
Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .
उत्तर
RHS = `1 + 2 tan θ/cos θ + 2 tan^2 θ`
= `1 + 2 sin θ/cos^2θ + 2 sin^2 θ/cos^2 θ`
= `(cos^2 θ + 2sin θ + 2 sin^2 θ)/(cos^2θ)`
= `(1 - sin^2θ + 2 sin θ + 2 sin^2θ )/(1 - sin^2θ)`
= `(1 + sin^2θ + 2 sin θ)/(1 - sin^2θ)`
= `(1 + sin θ)^2/( 1 + sin θ)(1 - sin θ)`
= `(1 + sin θ)/(1 - sin θ)`
= LHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`
`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`
`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`
Evaluate without using trigonometric tables:
`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`
Prove the following trigonometric identities.
`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`
Prove the following identities:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
`sin^2 theta + 1/((1+tan^2 theta))=1`
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`
Choose the correct alternative:
sec2θ – tan2θ =?