Advertisements
Advertisements
प्रश्न
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`
उत्तर
LHS = `(sin θ/cos θ + sin θ)/(sin θ/cos θ - sin θ)`
= `(sin θ (1/cos θ + 1))/(sin θ (1/cos θ - 1))`
= `(sec θ + 1)/(sec θ - 1)`
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2
`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`
Write the value of tan10° tan 20° tan 70° tan 80° .
For ΔABC , prove that :
`tan ((B + C)/2) = cot "A/2`
Prove that:
tan (55° + x) = cot (35° – x)
If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.
tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= R.H.S
Prove that
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A
Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`