हिंदी

Tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below. Activity: L.H.S = □ = □(1-sin2θtan2θ) = tan2θ(1-□sin2θcos2θ) = tan2θ(1 sin2θ1×cos2θ□) = tan2θ(1-□) = tan2θ×□ ..... - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

= `square (1 - (sin^2theta)/(tan^2theta))`

= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`

= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`

= `tan^2theta (1 - square)`

= `tan^2theta xx square`    .....[1 – cos2θ = sin2θ]

= R.H.S

रिक्त स्थान भरें
योग

उत्तर

L.H.S = tan2θ – sin2θ 

= `tan^2theta (1 - (sin^2theta)/(tan^2theta))`

= `tan^2theta (1 - (sin^2theta)/((sin^2theta)/(cos^2theta)))`

= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/sin^2theta)`

= `tan^2theta (1 - cos^2theta)`

= tan2θ × sin2θ     .....[1 – cos2θ = sin2θ]

= R.H.S

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Q.3 (A)

संबंधित प्रश्न

Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`


Prove the following trigonometric identities.

`(1 + cos A)/sin^2 A = 1/(1 - cos A)`


Prove the following trigonometric identities.

`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`


Prove the following trigonometric identities.

`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`


If sin θ + cos θ = x, prove that  `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`


Prove the following identities:

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


Prove the following identities:

`(sinAtanA)/(1 - cosA) = 1 + secA`


Prove the following identities:

`1 - cos^2A/(1 + sinA) = sinA`


If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2


Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:

sin θ × cosec θ = ______


Prove the following identity : 

`sec^4A - sec^2A = sin^2A/cos^4A`


Prove the following identity : 

`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`


Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tanθ + cotθ. 


Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.


If x = a tan θ and y = b sec θ then


sin2θ + sin2(90 – θ) = ?


Prove that `1/("cosec"  theta - cot theta)` = cosec θ + cot θ


If 3 sin θ = 4 cos θ, then sec θ = ?


Prove that cot2θ – tan2θ = cosec2θ – sec2θ 


Prove that `(sintheta + "cosec"  theta)/sin theta` = 2 + cot2θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×