Advertisements
Advertisements
प्रश्न
Prove the following identity :
`sec^4A - sec^2A = sin^2A/cos^4A`
उत्तर
`sec^4A - sec^2A = 1/cos^4A - 1/cos^2A`
= `(1 - cos^2A)/cos^4A`
= `sin^2A/cos^4A` [∵ `sin^2A = 1 - cos^2A`]
APPEARS IN
संबंधित प्रश्न
If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2
Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
Choose the correct alternative:
cot θ . tan θ = ?
`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.
Activity:
`5/(sin^2theta) - 5cot^2theta`
= `square (1/(sin^2theta) - cot^2theta)`
= `5(square - cot^2theta) ......[1/(sin^2theta) = square]`
= 5(1)
= `square`
The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.