Advertisements
Advertisements
प्रश्न
Write the value of tan10° tan 20° tan 70° tan 80° .
उत्तर
𝑡𝑎𝑛10° 𝑡𝑎𝑛20° 𝑡𝑎𝑛70° 𝑡𝑎𝑛80°
= cot(90° − 10° ) cot(90° − 20° ) 𝑡𝑎𝑛70° 𝑡𝑎𝑛80°
= 𝑐𝑜𝑡80° 𝑐𝑜𝑡70° 𝑡𝑎𝑛70° 𝑡𝑎𝑛80°
=`1/ (tan 80°) xx1/ (tan 70° ) xx tan 70° xx tan 80° `
= 1
APPEARS IN
संबंधित प्रश्न
Evaluate sin25° cos65° + cos25° sin65°
Prove the following trigonometric identities.
`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`
Prove the following identities:
`(1 + sin A)/(1 - sin A) = (cosec A + 1)/(cosec A - 1)`
Prove the following identities:
`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`
`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`
Show that none of the following is an identity:
`tan^2 theta + sin theta = cos^2 theta`
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
If `sec theta + tan theta = p,` prove that
(i)`sec theta = 1/2 ( p+1/p) (ii) tan theta = 1/2 ( p- 1/p) (iii) sin theta = (p^2 -1)/(p^2+1)`
If `sin theta = x , " write the value of cot "theta .`
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
If `secθ = 25/7 ` then find tanθ.
Prove the following identity :
`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
Prove that :(sinθ+cosecθ)2+(cosθ+ secθ)2 = 7 + tan2 θ+cot2 θ.
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1
Prove the following identity:
(sin2θ – 1)(tan2θ + 1) + 1 = 0