हिंदी

Write the Value of Tan10° Tan 20° Tan 70° Tan 80° . - Mathematics

Advertisements
Advertisements

प्रश्न

Write the value of tan10° tan 20° tan 70° tan 80° .

उत्तर

𝑡𝑎𝑛10° 𝑡𝑎𝑛20°  𝑡𝑎𝑛70°   𝑡𝑎𝑛80°
= cot(90° − 10° ) cot(90° − 20° ) 𝑡𝑎𝑛70°  𝑡𝑎𝑛80°  
= 𝑐𝑜𝑡80°   𝑐𝑜𝑡70°  𝑡𝑎𝑛70°  𝑡𝑎𝑛80°

=`1/ (tan 80°) xx1/ (tan 70° ) xx tan 70°  xx tan 80° `

= 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Trigonometric Identities - Exercises 3

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 8 Trigonometric Identities
Exercises 3 | Q 27

संबंधित प्रश्न

 Evaluate sin25° cos65° + cos25° sin65°


Prove the following trigonometric identities.

`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`


Prove the following identities:

`(1 + sin A)/(1 - sin A) = (cosec  A + 1)/(cosec  A - 1)`


Prove the following identities:

`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`


Prove the following identities:

`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`


Prove that:

`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`


`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`


`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`


Show that none of the following is an identity:

`tan^2 theta + sin theta = cos^2 theta`


If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`


If `sec theta + tan theta = p,` prove that

(i)`sec theta = 1/2 ( p+1/p)   (ii) tan theta = 1/2 ( p- 1/p) (iii) sin theta = (p^2 -1)/(p^2+1)`


If `sin theta = x , " write the value of cot "theta .`


Prove that:

`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.


If `secθ = 25/7 ` then find tanθ.


Prove the following identity :

`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`


Without using trigonometric identity , show that :

`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`


Prove that :(sinθ+cosecθ)2+(cosθ+ secθ)2 = 7 + tan2 θ+cotθ.


Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.


If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1


Prove the following identity:

(sin2θ – 1)(tan2θ + 1) + 1 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×