English

Write the Value of Tan10° Tan 20° Tan 70° Tan 80° . - Mathematics

Advertisements
Advertisements

Question

Write the value of tan10° tan 20° tan 70° tan 80° .

Solution

𝑡𝑎𝑛10° 𝑡𝑎𝑛20°  𝑡𝑎𝑛70°   𝑡𝑎𝑛80°
= cot(90° − 10° ) cot(90° − 20° ) 𝑡𝑎𝑛70°  𝑡𝑎𝑛80°  
= 𝑐𝑜𝑡80°   𝑐𝑜𝑡70°  𝑡𝑎𝑛70°  𝑡𝑎𝑛80°

=`1/ (tan 80°) xx1/ (tan 70° ) xx tan 70°  xx tan 80° `

= 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 3

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 3 | Q 27

RELATED QUESTIONS

Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.


Prove that

`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`


If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2


Prove that:

`cot^2A/(cosecA - 1) - 1 = cosecA`


Prove that:

`cosA/(1 + sinA) = secA - tanA`


`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta` 


`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`


`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`


From the figure find the value of sinθ.


\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to 

 

 


Prove the following identity :

`tan^2A - sin^2A = tan^2A.sin^2A`


If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m


If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.


Prove the following identities.

`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec"  theta - 1)/("cosec"  theta + 1)`


If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2


Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1


If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.


Show that, cotθ + tanθ = cosecθ × secθ

Solution :

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ


Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1


Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×