Advertisements
Advertisements
Question
Write the value of tan10° tan 20° tan 70° tan 80° .
Solution
𝑡𝑎𝑛10° 𝑡𝑎𝑛20° 𝑡𝑎𝑛70° 𝑡𝑎𝑛80°
= cot(90° − 10° ) cot(90° − 20° ) 𝑡𝑎𝑛70° 𝑡𝑎𝑛80°
= 𝑐𝑜𝑡80° 𝑐𝑜𝑡70° 𝑡𝑎𝑛70° 𝑡𝑎𝑛80°
=`1/ (tan 80°) xx1/ (tan 70° ) xx tan 70° xx tan 80° `
= 1
APPEARS IN
RELATED QUESTIONS
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
Prove that:
`cot^2A/(cosecA - 1) - 1 = cosecA`
Prove that:
`cosA/(1 + sinA) = secA - tanA`
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
From the figure find the value of sinθ.
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
Prove the following identity :
`tan^2A - sin^2A = tan^2A.sin^2A`
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ
Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1
Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`