English

Write the Value of Tan1° Tan 2° ........ Tan 89° . - Mathematics

Advertisements
Advertisements

Question

Write the value of tan1° tan 2°   ........ tan 89° .

Solution

Tan 1° tan 2° … tan 89°
= tan 1° tan 2° tan 3° … tan 45° … tan 87° tan 88° tan 89°

= tan 1° tan 2° tan 3° … tan 45° … cot(90° − 87° ) cot(90° − 88° ) cot(90° − 89° )

= tan 1°  tan 2° tan 3° … tan 45° … cot 3° cot 2° cot 1°
`= tan 1° × tan 2° × tan 3°  × …× 1 × …× 1/( tan 3° )xx 1/ (tan 2°) xx 1/ (tan 1°)`

= 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 3

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 3 | Q 28

RELATED QUESTIONS

Prove the following identities:

`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`

`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`

`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`


Prove that `cosA/(1+sinA) + tan A =  secA`


Prove the following trigonometric identities.

`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`


Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`


If tan A = n tan B and sin A = m sin B, prove that:

`cos^2A = (m^2 - 1)/(n^2 - 1)`


`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`


Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.


Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\] 


 Write True' or False' and justify your answer  the following : 

The value of  \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x'  is a positive real number . 


If \[sec\theta + tan\theta = x\] then \[tan\theta =\] 


(sec A + tan A) (1 − sin A) = ______.


Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.


If tan α = n tan β, sin α = m sin β, prove that cos2 α  = `(m^2 - 1)/(n^2 - 1)`.


Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`


Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2  = 1`


Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.


Choose the correct alternative:

sin θ = `1/2`, then θ = ?


If tan θ + cot θ = 2, then tan2θ + cot2θ = ?


Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×