Advertisements
Advertisements
Question
Write the value of tan1° tan 2° ........ tan 89° .
Solution
Tan 1° tan 2° … tan 89°
= tan 1° tan 2° tan 3° … tan 45° … tan 87° tan 88° tan 89°
= tan 1° tan 2° tan 3° … tan 45° … cot(90° − 87° ) cot(90° − 88° ) cot(90° − 89° )
= tan 1° tan 2° tan 3° … tan 45° … cot 3° cot 2° cot 1°
`= tan 1° × tan 2° × tan 3° × …× 1 × …× 1/( tan 3° )xx 1/ (tan 2°) xx 1/ (tan 1°)`
= 1
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`
`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`
`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`
Prove that `cosA/(1+sinA) + tan A = secA`
Prove the following trigonometric identities.
`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`
Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
(sec A + tan A) (1 − sin A) = ______.
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.
Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`
Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2 = 1`
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.
Choose the correct alternative:
sin θ = `1/2`, then θ = ?
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ