Advertisements
Advertisements
Question
Prove the following trigonometric identities.
`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`
Solution 1
We need to prove `1/(secA - 1) + 1/(sec A + 1) = 2 cosec A cot A`
Solving the L.H.S, we get
`1/(sec A - 1)+ 1/(sec A + 1) = (sec A + 1 + sec A - 1)/((sec A - 1)(sec A + 1))`
`= (2 sec A)/(sec^2 A - 1)`
Further using the property ` 1 + tan^2 theta = sec^2 theta` we get
So
`(2 sec A)/(sec^2 A - 1) = (2 sec A)/(tan^2 A)`
`= (2(1/cos A))/(sin^2 A/cos^2 A)`
`= 2 1/cos A xx cos^2 A/sin^2 A`
`= 2(cos A/sin A) xx 1/sin A`
= 2cosec A cot A
Solution 2
LHS = `1/(sec A - 1) + 1/(sec A + 1)`
= `(sec A + 1 + sec A - 1)/(sec^2 A - 1 )`
= `(2sec A)/(tan^2 A)`
= `2 . 1/(cos A) xx 1/((sin^2 A)/(cos^2 A))`
= `2. 1/(cos A) xx (cos^2 A)/(sin^2 A)`
= 2 cosec A. cot A
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Show that `sqrt((1-cos A)/(1 + cos A)) = sinA/(1 + cosA)`
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
Prove the following identities:
`(1 + sin A)/(1 - sin A) = (cosec A + 1)/(cosec A - 1)`
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`
`sec theta (1- sin theta )( sec theta + tan theta )=1`
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`
If m = ` ( cos theta - sin theta ) and n = ( cos theta + sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
Simplify : 2 sin30 + 3 tan45.
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ.
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Prove the following identity :
`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`
Without using trigonometric table , evaluate :
`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ
Choose the correct alternative:
cos 45° = ?
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ